A Real Ghost Fluid Method for the Simulation of Multimedium Compressible Flow
نویسندگان
چکیده
In the previous ghost fluid methods (GFMs) developed, the focus is on the definition of ghost fluid states while the pressure and velocity in the real fluid sides are taken for granted, except for the correction made to the density at the real fluid nodes next to the interface to overcome the possible problems related to overheating. It has been found that such GFMs encounter many difficulties when applied to shock impedance matching (-like) problems due to the inability of accurately imposing interfacial conditions. By predicting the flow states for the real fluid nodes just next to the interface and the ghost fluid nodes using the Riemann problem solver, a more accurate interface boundary condition can be imposed and the said difficulties are mitigated to a large extent. This leads to the development of a proposed real-GFM in this work. A simple yet efficient extension of the present method to multidimensions is also introduced. In order to overcome issues associated with the severe bunching of level set contours due to the large flow velocity gradient, an extension (artificial) velocity field is constructed in the computation of the level set function. The present method is applied to various oneand two-dimensional problems involving strong shock-interface interaction and complex flow physics.
منابع مشابه
Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کاملA front-tracking/ghost-fluid method for fluid interfaces in compressible flows
A front-tracking/ghost-fluid method is introduced for simulations of fluid interfaces in compressible flows. The new method captures fluid interfaces using explicit front-tracking and defines interface conditions with the ghost-fluid method. Several examples of multiphase flow simulations, including a shock–bubble interaction, the Richtmyer–Meshkov instability, the Rayleigh–Taylor instability, ...
متن کاملAn immersed-boundary method for compressible viscous flow and its application in gas-kinetic BGK scheme
An immersed-boundary (IB) method is proposed and applied in the gas-kinetic BGK scheme to simulate incompressible/compressible viscous flow with stationary/moving boundary. In present method the ghost-cell technique is adopted to fulfill the boundary condition on the immersed boundary. A novel idea “local boundary determination” is put forward to identify the ghost cells, each of which may have...
متن کاملNumerical Simulation of Fluid-Structure Interaction Using Modified Ghost Fluid Method and Naviers Equations
In this work, we deal with the 1D compressible fluid coupled with elastic solid in an Eulerian-Lagrangian system. To facilitate the analysis, the Naviers equation for elastic solid is cast into a 2×2 system similar to the Euler equation but in Lagrangian coordinate. The modified Ghost Fluid Method is employed to treat the fluid-elastic solid coupling, where an Eulerian-Lagrangian Riemann proble...
متن کاملComparison and Validation of Compressible Flow Simulations of Laser-Induced Cavitation Bubbles ?
The numerical simulation of compressible two–phase fluid flows exhibits severe difficulties, in particular, when strong variations in the material parameters and high interface velocities are present at the phase boundary. Although several models and discretizations have been developed in the past, a thorough quantitative validation by experimental data and a detailed comparison of numerical sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006